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MAT 3749 2.2 Part II Team Homework
Names: ______________________________________________________________

1. (3 points) Prove the following statement:

Let 
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2. (4 points) Suppose
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 is defined on an open interval contains 
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 definition to prove that if 
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Remarks 
i. In fact, suppose
[image: image14.wmf]f

is defined on an open interval contains 
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, it can be showed that
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is continuous at 
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 if and only if  
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ii. We need this result in the future.

3. (4 points) Use the fact that 
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to prove that 
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is continuous everywhere.
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